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Abstract: We discuss non-perturbative effects in the ABJM model due to monopole in-

stantons. We begin by constructing the instanton solutions in the U(2) × U(2) model,

explicitly, and computing the Euclidean action. The Wick-rotated Lagrangian is com-

plex and its BPS monopole instantons are found to be a delicate version of the usual ’t

Hooft-Polyakov monopole solutions. They are generically 1/3 BPS but become 1/2 BPS

at special locus in the moduli space of two M2-branes, yet each instanton carries eight

fermionic zero modes, regardless of the vacuum choice. The low energy effective action

induced by monopole instantons are quartic order in derivatives. The resulting vertices

are nonperturbative in 1/k, as expected, but are rational functions of the vacuum moduli.

We also analyze the system of two M2-branes in the supergravity framework and compute

the higher order interactions via 11-dimensional supergraviton exchange. The comparison

of the two shows that the instanton vertices are precisely reproduced by this M2-brane

picture, supporting the proposal that the ABJM model describes multiple M2-branes.

Keywords: Chern-Simons Theories, Nonperturbative Effects, M-Theory.

c© SISSA 2008

mailto:hosomiti@kias.re.kr
mailto:klee@kias.re.kr
mailto:sangmin@snu.ac.kr
mailto:sjlee@kias.re.kr
mailto:jaemo@postech.ac.kr
mailto:piljin@kias.re.kr
http://jhep.sissa.it/stdsearch


J
H
E
P
1
1
(
2
0
0
8
)
0
5
8

Contents

1. Introduction and summary 1

2. The ABJM model 4

3. Monopole instantons and the reality condition 7

4. Euclidean action and zero-modes 11

5. General monopole instantons, Euclidean action and zero-modes 14

6. The vertex operator and non-perturbative effective action 17

7. M/IIA bulk computation 20

7.1 M-theory picture: four-derivative interactions 21

7.2 Consistency check with IIA picture 24

A. Cocycles in a BF theory 27

B. Complex action and monopole action 28

C. Monopole vertex operator in the ABJM model 30

1. Introduction and summary

Understanding the worldvolume dynamics of M2-branes is an important step in the study

of M-theory. As a particularly interesting application, the superconformal field theory on

the worldvolume of multiple M2-branes is believed to give a holographic description of the

eleven-dimensional quantum supergravity on AdS4×S7. A supergravity analysis showed [1]

that the number of degrees of freedom on N M2-branes scales like N3/2, which implies a

nontrivial interaction between the coincident M2-branes. This peculiar scaling property was

believed to show up in the infrared strong coupling limit of the super Yang-Mills theory

on N D2-branes, although so far we have been unable to get a precise understanding of its

origin from the microscopic viewpoint.

It has been realized that the Chern-Simons gauge theories can have higher supersym-

metries than the familiar N = 3 barrier once the Yang-Mills term is turned off, and the

resulting Chern-Simons-matter theories may have applications to multiple M2-branes. Es-

pecially, a maximally supersymmetric Chern-Simons matter theory has been constructed

by Bagger, Lambert [2 – 4] and Gustavsson [5, 6] based on a mathematical structure called

3-algebra. On the other hand, another series of works [7 – 10] based on a more conventional
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approach have led to the full classification of Chern-Simons matter theories with N = 4, 5, 6

supersymmetry. See also [11 – 14].

A particularly interesting example, called the ABJM model [10], is an N = 6 supercon-

formal Chern-Simons matter theory where the U(N)×U(N) gauge fields of Chern-Simons

level (k,−k) are coupled to bi-fundamental matters. Aharony et.al. [10] proposed that

this model is the worldvolume theory of N M2-branes in the orbifold C
4/Zk. There are a

number of evidences supporting this proposal from the analysis of vacuum moduli space,

brane construction, etc. Further analysis has been made on its mass deformation [15 –

17, 9] and the effect of fractional M2-branes [18]. Recently, a perfect agreement of the

superconformal index between the field theory and the dual supergravity was found in a

certain limit [19], and further evidences supporting the proposal have been found in the

integrability structure of the two theories [20 – 29].

In this paper we make a first step to understand the quantum correction in the ABJM

model at the nonperturbative level, as a rather nontrivial test of the proposal. In particular

we consider instanton processes in the field theory side and identify their counterpart in

the dual 11-dimensional supergravity approach. To summarize the result first, we find that

instantons in the ABJM theories are of monopole type with eight fermionic zero modes

each, and that the instanton processes generate a series of higher order interaction terms

in the Coulomb phase. These range from a four-derivative bosonic terms to eight fermion

vertices. We also find that these higher order correction terms have a well-understood

origin in terms of M2-branes interacting via supergravity and thereby compute the bulk

counterpart accurately. Finally we show that the scaling behavior of the latter matches

precisely the effective and nonperturbative Lagrangian we computed from the monopole

instanton, which suggests strongly that this ABJM theory is indeed the worlvolume theory

of multiple M2-branes.

There hasve been similar considerations for three-dimensional N = 8 Yang-Mills the-

ory [30]. Here the monopole instanton corrections were interpreted in the supergravity side

as exchanges of D0-branes between a pair of M2-branes transverse to the M-theory circle,

or equivalently between a pair of D2-branes. Structures of the resulting higher order cor-

rections were determined quite precisely [31 – 33], and the match between the Yang-Mills

side and the M-theory side were demonstrated convincingly.

There are some notable differences between these two cases. From the gravity side, the

main difference is in the eleven-dimensional backgrounds. The former has two M2-branes

in R
8/Zk×R

2+1, while the latter has two M2-branes (transverse to S1) in S1 ×R
7 ×R

2+1.

The D0-branes, which are the bulk counterpart of the Yang-Mills monopole instantons in

the latter, must be now reinterpreted in the orbifold case, given the absence of a topological

circle, as one of the angular momentum in R
8. The angular momentum in question turned

out to be along the direction of the orbifolding action Zk.

In the field theory side, the difference runs much deeper. Since the ABJM theory

contains a pair of Chern-Simons terms, one generally expects a rather different behavior of

monopole instantons, if there is any. For instance, the Wick-rotated Lagrangian for such

theories is not real since the Chern-Simons term acquire a factor of i. In part due to this,

one generically finds that some real fields take complex configurations for the saddle point.
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However, this is not really a problem as long as the solution is regular and converges to the

(real) vacuum asymptotically. Using a complex saddle point here is no different than using a

complex saddle point when we perform ordinary contour integral of a function with critical

points off the real axis. As long as we make sure the semi-classical configuration approaches

the correct (real) vacuum and as long as we take care not to over-count excitations around

this Euclidean solution, this is a right thing to do.

Another, potentially more serious, worry arises from the gauge variance of the classical

action. In monopole backgrounds of any Chern-Simons theories, asymptotically nontrivial

gauge transformations shift the Euclidean action by some imaginary constants. As was

argued in [34], naive integration over this gauge orbit seems to project out the amplitudes

involving nonzero number of monopole-instantons. We show, however, that this argument

is misleading. The gauge variance of the action simply means that the monopole-instanton

carries the unbroken gauge charge, and that it mediates transitions between states with

different charges [35]. Gauge variance of monopole action cancels against the gauge variance

due to the two mismatching electric charges in the initial and the final wave functions, so

that the transition amplitudes are gauge invariant as a whole.

Those who are familiar with Chern-Simons theories may wonder whether there is a

finite action monopole instanton at all, since, for example, generic Chern-Simons Yang-Mills

theories are massive gauge theory and cannot have finite action monopole instantons. There

is a well-known linear divergence. If such a behavior were found here, this by itself would

have ruled out the ABJM model as a theory of M2-branes. Fortunately, however, there

is no such divergence here. In fact, the monopole instanton solutions here are essentially

the usual BPS monopoles of Yang-Mills theory up to a complexified gauge rotation. See

section 3 and 5 for the explicit forms. Our ‘complexified’ monopole instantons are novel

and original. Their nonperturbative effect remains to be explored in less supersymmetric

varieties of the ABJM type theories.

Our M-theory dual calculation leads to a very detailed and precise effective Lagrangian

for the M2-branes and contains both perturbative and nonperturbative corrections when

viewed from the field theory side. We have reproduced the correct scaling behaviors of

those corresponding to the nonperturbative parts by studying monopole instantons, but

stopped short of computing loop corrections to these interaction vertices, such as loop

correction to the monopole instanton saddle point. Nor did we try to evaluate the simple

perturbative loop corrections, which according to the M-theory computation, should also

begin at the four-derivative level. It would be interesting to reproduce the entire structure

and the coefficients of M-theory result, from a purely field theoretic calculation of the

ABJM model.

In section 2, we start with a brief review of the ABJM model, focusing especially on its

vacuum moduli space. We present generic vacua of the theory with gauge group U(2)×U(2)

and their massive spectrum. Then we turn to study the monopole equations in U(2)×U(2)

model. We are able to find the ‘BPS monopole instanton configuration’ throughout the

vacuum moduli space by simple embedding of the well known ’t Hooft Polyakov solution.

Our stationary monopole solution is generically complex. This monopole solution is 1/3

BPS at generic points in moduli space, while at some special locus it becomes 1/2 BPS and
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takes a simpler form. In section 3 we first give the construction of the 1/2 BPS solutions

in the special cases where only one complex scalar field takes nonzero vacuum expectation

value, and then present the general solutions in section 5.

In section 4 we get a simple expression for the Euclidean action, and find that each

monopole-instanton carries eight fermion zero-modes. Although the action is not invariant

under a certain gauge transformation, it simply reflects the gauge charge carried by the

monopole and does not mean their effects are projected out. In section 5, we also cal-

culate the monopole action and the zero-modes for the general 1/3 BPS multi-monopole

instantons.

The issues on gauge invariance in Chern-Simons theories will be explained in greater

detail in section 6. Later in that section we also argue that the instanton effects are

described by local vertex operators in the low-energy moduli dynamics, and discuss several

constraints on their possible forms.

Finally, in section 7 we move to the M/string theory framework. We first study the

system of two M2-branes in supergravity and see the correspondence between certain trans-

verse momentum exchanges between the M2-branes and the multi-monopole instanton

processes in the ABJM model. We then turn to the type IIA picture and show that the

D0-brane exchange along the Euclidean geodesic line between two D2-branes reproduce the

monopole instanton action of the field theory. We also get the correct mass spectrum in

the generic vacua of the field theory from the energy of the fundamental string connecting

two D2-branes. These agreements between the ABJM model and the dual supergravity

provide strong evidences that the ABJM model is the correct theory of M2-branes on the

orbifold C
4/Zk.

In appendix A we take the simple example of abelian BF-matter theory, and give

the explicit construction of the so-called 0-cocycle which is necessary to make the action

gauge invariant. This is complementary to the abstract discussion of cocycles given in

section 6. In appendix B, we recalculate the Euclidean action of monopole instantons by

somewhat different approach from section 4. In appendix C, we recapitulate the monopole

vertex operators in the Maxwell theory and in the Chern-Simons matter theory for further

clarification.

2. The ABJM model

We present in this section a short description on the ABJM model [10], believed to describe

the dynamics of multiple M2-branes probing a certain orbifold geometry. This N = 6

supersymmetric model has the gauge symmetry G = U(N)1 × U(N)2 whose gauge fields

are denoted by Aµ and Ãµ with the Chern-Simons kinetic term of level (k,−k). The matter

fields are composed of four complex scalars Zα (α = 1, 2, 3, 4) and four three-dimensional

spinors Ψα, both of which transform under G as (N, N̄). As well as the gauge symmetry,

the present model also has additional global SU(4) R-symmetry, under which the scalars

Zα furnish the representation 4 while the fermions Ψα furnish 4̄.

Let us start with the Lagrangian of the ABJM model,

L = LCS + Lkin + LYukawa + Lpotential , (2.1)
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where

LCS + Lkin =
k

4π
ǫµνρtr

(

Aµ∂νAρ − i
2

3
AµAνAρ − Ãµ∂νÃρ + i

2

3
ÃµÃνÃρ

)

−tr
(

DµZ̄
αDµZα − iΨ̄αγ

µDµΨ
α
)

,

LYukawa = −2πi

k
tr
(

Z̄αZαΨ̄βΨ
β − ZαZ̄

αΨβΨ̄β + 2Z̄αΨβΨ̄αZβ − 2ZαΨ̄βΨ
αZ̄β

)

−2πi

k
ǫαβγδtr

(

ZαΨ̄βZγΨ̄δ

)

+
2πi

k
ǫαβγδtr

(

Z̄αΨβZ̄γΨd
)

, (2.2)

and

Lpotential= +
4π2

3k2
tr
(

ZαZ̄
αZβZ̄

βZγZ̄
γ + Z̄αZαZ̄

βZβZ̄
γZγ

+4ZαZ̄
γZβZ̄

αZγZ̄
β − 6ZαZ̄

αZβZ̄
γZγZ̄

β
)

. (2.3)

We basically use the convention of [9] except the hermitian gauge fields so that the covariant

derivatives now become

DµZα = ∂µZα − iAµZα + iZαÃµ , (2.4)

and Chern-Simons level k is now quantized as an integer, i.e., k ∈ Z. The trace is over

N × N matrices of either gauge group and leaves the gauge invariant quantities. The

contraction of spinor fields is the standard one. This Lagrangian is invariant under the

N = 6 supersymmetry whose transformation rules are

δZα = −iηαβΨβ, (2.5)

δΨα =

[

γµDµZγ −
4π

3k
(Z[βZ̄

βZγ])

]

ηγα +
8π

3k
(ZβZ̄

αZγ)η
γβ − 4π

3k
ǫαβγδ(ZβZ̄

ρZγ)ηδρ ,

δAµ =
2πi

k
(ηαβγµZαΨ̄β + ηαβγµΨ

βZ̄α), δÃµ =
2πi

k
(ηαβγµΨ̄βZα + ηαβγµZ̄

αΨβ) ,

where the transformation parameters ηαβ satisfy the relations

ηαβ = −ηβα, ηαβ = (ηαβ)∗ =
1

2
ǫαβγδη

γδ . (2.6)

Let us now examine the vacuum moduli space of the present model at the classical

level, i.e., solutions of V (Φ) = 0 up to gauge transformations. It is known that the potential

can be made into a sum of squares

V =
2π2

3k2
tr
(

W β
αγW̄

γα
β

)

(2.7)

with

W β
αγ = (2ZαZ̄

βZγ − δβγZαZ̄
ρZρ − δβαZρZ̄

ρZγ) − (α ↔ γ) ,

W̄αγ
β = (2Z̄αZβZ̄

γ − δγβZ̄
αZρZ̄

ρ − δαβ Z̄
ρZρZ̄

γ) − (α ↔ γ) , (2.8)

which leads to the equation for its minima

ZαZ̄
βZγ = ZγZ̄

βZα , Z̄αZβZ̄
γ = Z̄γZβZ̄

α . (2.9)
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This implies that the hermitian matrices ZαZ̄
β commute with each other, and similarly

for Z̄αZβ. The vacuum solutions are thus given by diagonal Zα up to gauge equivalences,

Zα = diag(z1
α, z

2
α, . . . , z

N
α ) . (2.10)

On a generic point of the vacuum moduli space, the gauge group G = U(N) × U(N) is

spontaneously broken down to U(1)N ⊂ U(N)D, diagonal part of G.

In order to describe a classical Lagrangian that governs the dynamics of massless

moduli fields, we first take the diagonal elements of gauge fields Aµ and Ãµ, i.e.,

Aµ = diag(a1
µ, a

2
µ, . . . , a

N
µ ), Ãµ = diag(ã1

µ, ã
2
µ, . . . , ã

N
µ ) . (2.11)

Although ai − ãi are the gauge fields of the broken gauge symmetries, we need to keep

them [36, 37]. In terms of these diagonal variables, the classical low-energy Lagrangian is

Lcl = −
∑

i

|Dµz
i
α|2 +

∑

i

k

4π
ǫµνρ(aiµ − ãiµ)f

i
νρ , (2.12)

where Dµz
i
α = ∂µz

i
α − i(aiµ − ãiµ)z

i
α and f i = d(ai + ãi)/2. The role of the Chern-Simons

terms for the moduli dynamics can be seen best by dualizing (aiµ + ãiµ)/2. This is done by

adding to Lcl a term

Ldual = − 1

4π
ǫµνρ

∑

i

∂µθ
if iνρ , (2.13)

and by treating f i as the fundamental variable. The θi variables are normalized to have

period 2π. Integrating over θi brings us back to the original low energy Lagrangian, whereas

integrating over f i imposes the condition,

k(aiµ − ãiµ) = ∂µθ
i . (2.14)

The Chern-Simons terms disappear upon this, while the kinetic term simplifies to an ordi-

nary linear sigma model

L = −
∣

∣∂µz̃
i
α

∣

∣

2
, z̃iα = e−iθ

i/kziα . (2.15)

Note that z̃iα are invariant under local gauge transformations. The 2π periodicity of θi,

combined with the Weyl symmetry, tells us that the vacuum moduli space is an orbifold

(

C
4/Zk

)N
/SN , (2.16)

and also that the correct low energy variables to use are these invariant fields z̃iα [10]. These

gauge invariant moduli coordinates z̃iα, i = 1, . . . , N denote the positions of N M2-branes

on the orbifold C
4/Zk after a proper scaling.

Let us now in turn discuss the vacuum degeneracy of the theory. Since we can add

to a given ground state, without costing any energy, the magnetic flux f i12 together with

– 6 –
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certain amounts of charges, the theory has huge number of vacuum degeneracy. Here the

flux and charges that specify the vacuum should satisfy the Gauss laws of the model (2.12),

k

2π
f i12 − i(D0z

i
αz̄

iα − ziαD0z̄
iα) = 0 ,

∂1(a
i
2 − ãi2) − ∂2(a

i
1 − ãi1) = 0 . (2.17)

Magnetic monopole instantons are those which interpolate between vacua of different mag-

netic flux and charges. The monopole instantons thus violate some of the global charges

in the vacuum moduli dynamics (2.15). In section 6 we will construct the local vertex

operators describing their effect using the gauge invariant variables z̃iα.

We close this section with mass spectrum on the generic point of vacuum moduli space.

For an instance, let us consider the vacua of the theory with U(2)×U(2) gauge group. By

the SU(4)R and gauge transformations, one can parameterize them as

〈Z1〉 =

(

u1 0

0 u2

)

, 〈Z2〉 =

(

cu2 0

0 cu1

)

, 〈Z3〉 = 〈Z4〉 = 0 , (2.18)

where the parameters are all real and obey 0 < u1 < u2 and 0 < c. Note that the two

M2-brane are at z1
α = (u1, cu2, 0, 0) and z2

α = (u2, cu1, 0, 0). The linear fluctuation analysis

tells us that the mass spectrum in this vacuum is given by

massless multiplet : 16 scalar bosons + 16 fermions,

massive multiplet : 12 scalar bosons + 16 fermions + 4 vector bosons, (2.19)

where the mass of the massive multiplet is

µ =
2π

|k|

√

(

(z1 · z̄1)2 + (z2 · z̄2)2
)2 − 4

∣

∣z1 · z̄2
∣

∣

2

=
2π

|k| (1 + c2)(u2
2 − u2

1) . (2.20)

This agrees with the result in [38]. Here dot indices denote the SU(4)R indices contrac-

tion. The spin structure of the massive multiplet is (1, 1
2 , 0,−1

2 ,−1) with multiplicity

2 × (1, 4, 6, 4, 1). In section 7, we interpret the vacuum expectation value (2.18) as the

positions of two M2-branes in C
4/Zk, and the M2-brane connecting these two branes has

the energy given by the above mass formula.

3. Monopole instantons and the reality condition

In this section, we wish to look for monopole instanton solutions. For the instanton physics,

we consider the Euclidean version of the theory. As usual, we take the Wick rotation

t = −iτ to obtain the Euclidean Lagrangian,

−LE = iLCS + Lkin + LYukawa + Lpotential . (3.1)

– 7 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
8

It is noteworthy here that the Chern-Simons coupling LCS gets the imaginary sign which

will introduce several subtle issues in later sections. Three-dimensional Euclidean gamma

matrices γµ are chosen to satisfy the relations

{γµ, γν} = 2δµν , γµνρ = iǫµνρ . (3.2)

In the most of this work we focus on the case with U(2) ×U(2) gauge group, which is

the simplest where monopole instantons appear. We will work with the parametrization of

the vacua given in (2.18). Let us begin with the special case c = 0 where only one of the

four scalars takes non-zero vev, say Z = Z1,

〈Z〉 = U

(

u1 0

0 u2

)

V −1 = 〈Z̄〉† (3.3)

for some unitary U and V . 〈Z̄〉 is of course the conjugate of 〈Z〉, so the latter equation is

redundant. The reason we show it explicitly should become clear in a moment. Without

loss of generality, we suppose that u1,2 are real and that 0 < u1 < u2. In terms of the

M2-brane interpretation, these two are radial positions of the two M2-branes in the orbifold

C
4/Zk.

We are looking for a monopole instanton that preserves some supersymmetry. The

BPS equation coming from supersymmetry transformation is pretty simple when we turn

on only one of the four scalar fields, and with

DZ ≡ dZ − iAZ + iZÃ and DZ̄ ≡ dZ̄ − iÃZ̄ + iZ̄A , (3.4)

we have

DZ = 0 or DZ̄ = 0 (3.5)

as the condition for half-BPS configurations. One would think that the second equation

is the same as the first, again since Z̄ is merely a conjugate of Z, in which case this will

certainly lead to constant Z and Z̄ only.

However, the ABJM model is a Chern-Simons theory. The Chern-Simons term acquires

a factor i upon Wick rotation, and the Euclidean action becomes complex. In such circum-

stances, the saddle point evaluation can often involve deformation of the path-integral into

complex planes of (what used to be real) field variables. In appendix B, such complexified

stationary path is found for a very simple mechanical model. The semi-classical configura-

tions that dominate the path integral need not satisfy the usual reality constraints. This is

nothing new, and we do such deformation of contour all the time when we perform ordinary

integration of real functions.

It may happen that there exists a saddle point where only one of the two condi-

tions (3.5) is satisfied, say

DZ = 0 . (3.6)

This is the type of saddle points we are interested in, and the solution we obtain can

be interpreted as a monopole-like instanton.1 The broken supersymmetry generators are

1We can treat DZ̄ and DZ differently, in part because each enters the supersymmetry transformation

rule of Ψ and Ψ̄. In Euclidean signature, as is well known, these two fermions must be treated as independent

variables, so their supersymmetry transformation can be treated independently as well.
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along η12, η13, η14 for this case.2 As it will become clear soon, the other choice DZ̄ = 0

with broken supersymmetry generators along η1α corresponds to anti-monopole solution.

Using DZ = 0 together with the Gauss constraints for A and Ã, we find the following

set of equations

k

2π
∗ F ≡ k

2π
∗ (dA− iA ∧A) = −D(ZZ̄) ,

k

2π
∗ F̃ ≡ k

2π
∗ (dÃ− iÃ ∧ Ã) = −D(Z̄Z) . (3.7)

Note that

D∗D(ZZ̄) = 0 = D∗D(Z̄Z) (3.8)

follows by a further use of the Bianchi identity, so the BPS equation together with the

Gauss constraint implies the equation of motion

D∗DZ̄ = 0 (3.9)

as long as the covariantly constant Z is nonsingular.

The master equations (3.7) look like ordinary BPS equation for monopoles. As an

initial attempt, let us consider A = Ã, so that F = F̃ . The BPS equation then implies

D ∧DZ = −i[F,Z] = 0, which together with (3.7) forces (with some constants a, b, c)

Z = c12, Z̄ = aΦ + b12, (3.10)

where Φ is a 2× 2 traceless scalar function that, together with A = Ã, solves the ordinary

monopole BPS equation. However, this has the asymptotic value 〈Z〉† 6= 〈Z̄〉 which violates

the reality condition, and, as such, is unusual. The only exception occurs when a = 0, b∗ = c

which brings us back to a vacuum.

Underlying this difficulty is that the gauge fields A = Ã in this ansatz is perfectly real,

even though we do not expect the saddle point that obeys usual reality conditions. What

we cannot abandon is the reality condition of the vacuum itself, so we must be prepared to

trade off the (partial) reality of the instanton solution in favor of the reality of the scalar

vev.

Motivated by this initial failure, let us consider the following redefinition of variables

Z = LZL, Z̄ = L−1Z̄L−1 (3.11)

accompanied by cancelling transformation of the gauge fields,

A = LAL−1 + iLdL−1 , Ã = L−1ÃL+ iL−1dL , (3.12)

none of which preserve the reality conditions. On the other hand, the BPS equation and the

Gauss constraint are preserved, so A, Ã,Z, Z̄ obey the same set of equations as A, Ã, Z, Z̄ .

One can think of L as a complexified gauge transformation, although we are not suggesting

it as a symmetry of the theory itself.

2Here we assume that the Euclidean supersymmetry parameters satisfy the reality condition similar

to (2.6), implying twelve real supersymmetries in the Euclidean theory as well.
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The point of doing this redefinition is that now we can use the ansatz A = Ã without

worrying about the reality condition between 〈Z〉 and 〈Z̄〉. The general solution with the

reality condition 〈Z〉 = 〈Z̄〉† asymptotically satisfied turns out to be

Z =
√
u1u212 , Z̄ =

1√
u1u2

(

(u2
1 − u2

2)Φ +
u2

1 + u2
2

2
12

)

, (3.13)

and

∗ F ≡ ∗(dA− iA ∧A) = µ (dΦ − i[A,Φ]) , (3.14)

where Φ is normalized so that tr〈Φ〉2 = 1/2 and µ is the mass parameter (2.20) with c = 0,

µ =
2π

k

(

u2
2 − u2

1

)

> 0. (3.15)

The equation (3.14) is nothing but the usual BPS monopole equation with the scale µ [39].

The solution for a single monopole is

Φ =

(

coth µr − 1

µr

)

r̂aσa

2
, Ã = A =

1

2

(

µr

sinhµr
− 1

)

ǫabcσar̂bdr̂c . (3.16)

One can reconstruct A, Ã, Z, Z̃ by finding appropriate transformation matrix L.

To find L, and also to see how (3.13) leads to the solution with physically acceptable

vev, consider

Z =
√
u1u2L

2, Z̄ = L−1 1√
u1u2

(

(u2
1 − u2

2)Φ +
u2

1 + u2
2

2
12

)

L−1 . (3.17)

With real u1,2 it is clear that 〈Z〉 = 〈Z̄〉† can be satisfied for L of the general form

L = eΛ(x)〈Φ〉 , (3.18)

where asymptotic value Λ∗ of Λ(x) is constant on S2
∞. This value should be

eΛ∗ =

√

u1

u2
. (3.19)

To see this, we need to compare the asymptotic value at each point on S2
∞. This can be

easily done in the unitary gauge 〈Φ〉 = σ3/2 where we have

lim
x→∞

L2 = eΛ∗σ3 , (3.20)

and (3.17) leads to the vev

〈Z〉 =

(

u1 0

0 u2

)

= 〈Z̄〉† (3.21)

as promised, up to gauge rotations U and V . One choice of L which is smooth everywhere

is L = e−
1

2
log(u2/u1)Φ(x).
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Finally, let us consider the other choice of BPS equation DZ̄ = 0. This choice leads to

a different set of equations when combined with the Gauss constraints

k

2π
∗ F ≡ k

2π
∗ (dA− iA ∧A) = D(ZZ̄) ,

k

2π
∗ F̃ ≡ k

2π
∗ (dÃ− iÃ ∧ Ã) = D(Z̄Z) . (3.22)

The analog of (3.17) for the scalar field is now

Z = L̃
1√
u1u2

(

(u2
1 − u2

2)Φ +
u2

1 + u2
2

2
12

)

L̃, Z̄ =
√
u1u2 L̃

−2, (3.23)

with A = L̃AL̃−1 + iL̃dL̃−1, Ã = L̃−1ÃL̃ + iL̃−1dL̃, which leads us to the anti-BPS

equation for ordinary monopoles

∗ F ≡ ∗(dA− iA ∧A) = −µ (dΦ − i[A,Φ]) (3.24)

with the same scale µ > 0 as before. If we choose to write the anti-monopole instanton

to have the same 〈Φ〉 as that of the monopole instanton, L̃ = L−1 will do the trick for

reconstruction of the anti-monopole instanton A, Ã, Z, Z̄ from this data. What is important

for us is that the two cases differ by Z ↔ Z̄ and the relative sign change between dA− iA2

and (d− iA)Φ.

4. Euclidean action and zero-modes

There is a potential subtlety with the Euclidean action, because a Chern-Simons monopole

mediates two states that differ by k units of electric charge. When the transition is not

vacuum-to-vacuum one, the computation of the WKB amplitude can in general involve

the so-called cocycle factor. However, at the end of the day the ordinary Euclidean action

would suffice with the present solution, as far as the modulus of the WKB amplitude goes,

so let us evaluate SE for our solutions. The cocycle issues will be addressed in section 6

and appendix A. An alternative evaluation of the monopole action is given in appendix B.

SE has three bosonic pieces, the Chern-Simons term, the scalar kinetic term, and the

potential term. The potential term does not contribute since only one complex scalar is

turned on, while the scalar kinetic term, DZ̄αDZα, vanishes on either of BPS or anti-BPS

equations, DZ = 0 or DZ̄ = 0. Thus, the only piece that contributes is the Euclidean

Chern-Simons action. For a monopole instanton, therefore, we find

−SE =
ik

4π

∫

(

ω3(A) − ω3(Ã)
)

=
ik

4π

∫

(

ω3(LAL−1 + iLdL−1) − ω3(L
−1ÃL+ iL−1dL)

)

. (4.1)

This can be split into pieces involving A = Ã only, which cancel each other, and the rest

−SE =
k

4π

∫

S2
∞

(
∫ 1

0
ds tr[log(L)dAs]

)

+
k

4π

∫

S2
∞

(
∫ 1

0
ds tr[log(L)dÃs]

)

(4.2)
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with As ≡ LsAL−s+iLsdL−s and Ãs ≡ L−sALs+iL−sdLs. Thus, it suffices to understand

the asymptotic behavior of the gauge fields.

Parameterizing 〈Φ〉 as naσa/2 with a unit 3-vector n, the asymptotic gauge field has

the form,

A
∣

∣

∣

S2
∞

=
σa

2
(dn× n+ αn)a , (4.3)

where the cross product is with respect to the SU(2) adjoint indices and α is a 1-form.

This comes from DΦ = O(1/r2) . The asymptotic forms of dAs and dÃs are such that

nadAa
∣

∣

∣

S2
∞

= nadAas

∣

∣

∣

S2
∞

= nadÃas

∣

∣

∣

S2
∞

= na(−dn× dn)a + dα (4.4)

regardless of Ls, since the transformation by L only shifts α by ±idΛ. It is instructive to

consider first the asymptotic form of naFa,

naFa
∣

∣

∣

S2
∞

=
1

2
na(−dn× dn)a + dα . (4.5)

Note the relative factor 1/2 in front of the two first terms in the two expressions. Recall

that the monopole solution is such that
∫

S2
∞

naFa = 4π (4.6)

by definition. For the spherically symmetric Hedge-Hog gauge with na = −r̂a and α = 0,

this can be seen explicitly by integrating the first term of (4.5). For more general but still

smooth gauge choice, the first term yields the same 4π since it is a topological expression

while dα should remain exact on S2
∞. Therefore, for any smooth gauge choice we find

∫

S2
∞

nadAa = 2

∫

S2
∞

naFa = 8π . (4.7)

The potential subtlety is in the limiting case of the unitary gauge na = δa3 where α is

the Dirac potential of flux 4π with a Dirac string. Globally, dα remains exact. What

happens here is that, in this gauge, the winding number density of the first term of naFa

is concentrated along the Dirac string direction and cancels the Dirac string contribution.

For nadAa, this does not happen. Instead, the first, winding term overcompensate the

Dirac string piece in dα by a factor of two. So the Dirac potential (i.e., dα minus the Dirac

string) contributes 4π and the winding number density combined with the Dirac string

contributes 4π, so that again we find
∫

S2
∞

nadAa = 8π.

Therefore, with L = eΛ(x)〈Φ〉 and Λ∗ = Λ(∞), the Euclidean action for a single

monopole instanton is

−SE = 2 × k

4π

∫

S2
∞

Λ∗ tr (〈Φ〉dA) = 2 × kΛ∗

8π

∫

S2
∞

nadAa = 2kΛ∗ (4.8)

which gives

e−SE = e2kΛ∗ =

(

u1

u2

)k

for Λ∗ =

√

u1

u2
. (4.9)
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The computation of the Euclidean action for the anti-monopole instanton proceeds exactly

the same manner, except L is replaced by L−1 and F = F̃ has the opposite magnetic flux.

The combined effect is again the same result. We could have done the same computation

for multi-monopole instantons and multi-anti-monopole instantons, and the result is

e−SE =

(

u1

u2

)k|m|

(4.10)

for the monopole number m. Note that our vacuum choice was such that 0 < u1 < u2, and

the WKB amplitude is suppressed by powers of (u1/u2)
k for each monopole. This is con-

sistent with 1/k as the effective coupling in this theory, for the amplitude is exponentially

suppressed by k. However, the suppression is only powerlike with respect to the vacuum

expectation values.

Now we turn to zero-mode counting. The number of bosonic zero-modes within the

present ansatz with A = Ã is clearly 4|m| since the problem collapses to the usual Yang-

Mills case. While we do not have a rigorous proof yet, we believe these usual bosonic

zero-modes of (anti-)BPS monopoles exhaust all such for the monopole instanton of the

present theory. A partial support comes from the fermionic part of the story, which can be

more easily counted. The fermionic partners, Ψα and Ψ̄α of Zα and Z̄α, have the following

equation of motion when only Z = Z1 is excited,

k

2π
γµDµΨ

α ± (ZZ̄)Ψα ∓ Ψα(Z̄Z) = 0 (4.11)

and
k

2π
γµDµΨ̄α ± Ψ̄α(ZZ̄) ∓ (Z̄Z)Ψ̄α = 0 , (4.12)

where again, in this Euclidean regime, we treat the two sets of fermions as independent.

The upper sign is for Ψ2,3,4 and Ψ̄2,3,4 while the lower sign is for Ψ1 and Ψ̄1.

Let us first exploit the general form of monopole instanton solution, and go to

A = Ã,Z, Z̄ variables. Redefining

Ψα = LψαL, Ψ̄α = L−1ψ̄αL
−1 , (4.13)

the zero-mode equations reduce to

γµDµψ
α ∓ µ[Φ, ψα] = 0 (4.14)

and

γµDµψ̄α ± µ[Φ, ψ̄α] = 0 , (4.15)

where

D = d− iA (4.16)

acting on what are effectively the adjoint fermions ψ and ψ̄. The complication due to

the complex nature of the solution does not enter the index counting because the scalar

contributes only in terms of ZZ̄ = −kµΦ/2π + (· · · ) × 12. Note that the constant part

ZZ̄ , proportional to 12, also disappears since the scalar ZZ̄ acts as a commutator.
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Thus, the fermion zero-mode problem is reduced to that of 2-component adjoint

fermions in ordinary BPS monopole, (A = Ã, µΦ), albeit now in the Euclidean three-

dimensional world. Since the monopole instanton is no longer a solution that obeys reality

condition, the corresponding zero-mode counting could have been awkward. However, the

special form of the solution A, Ã, Z, Z̄ which can be mapped to A = Ã,Z, Z̄ , allows an

easy translation to the zero-mode counting of the ordinary BPS monopole.

The latter says the following: the field equation for a complex fermion ψ in

m-monopole background

γµDµψ + µ[Φ, ψ] = 0 (4.17)

has 2m zero-modes [40, 41], whereas the similar equation with the second term sign-flipped

has no zero-modes. Thus on our one-monopole background we have two zero-modes from

each of ψ1, ψ̄2,3,4. The transforming matrix L does nothing to the usual normalizability

conditions on zero-modes, so therefore we have total of eight zero-modes per each monopole

instanton, with two each for

Ψ1, Ψ̄2, Ψ̄3, Ψ̄4 . (4.18)

For anti-monopoles, which also contribute quantum corrections, the situation is reversed

and the roles of Ψ and Ψ̄ are exchanged.

This apparent disparity between Ψ and Ψ̄ is related to the usual practice of treating

them as independent. What should be remembered, though, is that each zero-mode of Ψ,

even though they are complex fields, carries a single fermionic collective coordinate and

likewise for Ψ̄. Thus, the number of Grassmanian collective coordinates to saturate, in order

to have nonvanishing contribution to the path-integral, is eight. The vertex operators one

can compute directly from the dilute gas approximation of monopoles and anti-monopoles

should have eight fermions, of the form

(Ψ1)2(Ψ̄2)
2(Ψ̄3)

2(Ψ̄4)
2 . (4.19)

5. General monopole instantons, Euclidean action and zero-modes

So far we considered monopole instanton in a vacuum where only Z1 takes an expectation

value. Even in the simplest of the ABJM model with U(2)×U(2), however, this is not the

generic vacuum. As we saw in section 2, generically three real parameters can be turned

on, up to the gauge and SU(4)R symmetry transformations, and this forces at least two

scalar fields, say Z1,2, take vev as shown in eq. (2.18). In such general vacua, the ansatz

we employed above will not work since the general form of the instanton solution requires

turning on at least one more scalar field, say Z2, in addition to Z = Z1. In particular, the

BPS equation has to be modified to accommodate Z2 and Z̄2.

The generalized form of the BPS equation with two scalar fields involved is

DZ1 = 0 , DZ̄2 = 0 . (5.1)

This preserves one third of the N = 6 supersymmetry with the preserved supersymmetry

parameters η23, η24 of the supersymmetry transformation (2.6). Note that a similar choice
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such as DZ1 = DZ2 = 0 would lead to the solutions with Z1 and Z2 proportional to each

other, which are trivially related to the previous 1/2 BPS solutions by a suitable SU(4)R
rotation. With this BPS equation, the Gauss constraints reduce to

k

2π
∗ F ≡ k

2π
∗ (dA− iA ∧A) = D(Z2Z̄

2 − Z1Z̄
1),

k

2π
∗ F̃ ≡ k

2π
∗ (dÃ− iÃ ∧ Ã) = D(Z̄2Z2 − Z̄1Z1) , (5.2)

which again suggests a simple mapping to ordinary monopole BPS equations, except that

Z̄2Z2 − Z̄1Z1 replaces −Z̄Z.

Recall that we chose the parameterization of the generic vacua (2.18) as

〈Z1〉 =

(

u1 0

0 u2

)

, 〈Z2〉 =

(

cu2 0

0 cu1

)

, (5.3)

where 0 < u1 < u2 and 0 < c. With this, we can again resort to the transformed variables

A = LAL−1 + iLdL−1, Ã = L−1ÃL+ iL−1dL (5.4)

and take the ansatz A = Ã. The Gauss constraints collapse to

∗F ≡ ∗(dA− iA ∧A) = µ(dΦ − i[A,Φ]) , (5.5)

where µ = 2π
k (1+c2)(u2

2−u2
1) is the mass parameter for generic vacua (2.20). The monopole

scalar function Φ (with tr〈Φ2〉 = 1/2) enters the transformed scalar fields as

Z1 =
√
u1u2 12, Z̄1 =

1√
u1u2

(

(u2
1 − u2

2)Φ +
u2

1 + u2
2

2
12

)

,

Z̄2 = c
√
u1u2 12, Z2 =

c√
u1u2

(

(u2
2 − u2

1)Φ +
u2

2 + u2
1

2
12

)

, (5.6)

which is related to the physical scalar fields as,

Z1,2 = LZ1,2L, Z̄1,2 = L−1Z̄1,2L−1, (5.7)

for some L as before.

An interesting aspect of this solution is that L is independent of the constant c and

remains unchanged from that of the monopole instanton in the special vacua. Thus L in

equations (3.18) and (3.19) ensures the reality condition 〈Z1,2〉 = 〈Z̄1,2〉†. Because of this

peculiar feature, which is no doubt due to our nonconventional parameterization of the

vev’s, the Euclidean action of the monopole instanton remains independent of c,

e−SE =

(

u1

u2

)k|m|

(5.8)

for m-monopole instanton in this generic vacuum. We confirm this c-independent action

from the M-theory calculation in section 7.
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As suggested by the fact that eight supercharges are broken, the number of zero-modes

remains eight. Due to Z1, Z2 being nonzero, the fermion equation of motion mixes Ψ1 and

Ψ2, and also Ψ3 and Ψ̄4. Using that Z1 and Z̄2 are constant and proportional to the

identity matrix, we find that the equations for Ψ3,Ψ4, Ψ̄3, Ψ̄4 become

k

2π
γµDµψ

3 + [Z1Z̄1 + Z2Z̄2, ψ3] + 2[Z1Z2, ψ̄4] = 0,

k

2π
γµDµψ

4 + [Z1Z̄1 + Z2Z̄2, ψ4] − 2[Z1Z2, ψ̄3] = 0,

k

2π
γµDµψ̄3 − [Z1Z̄1 + Z2Z̄2, ψ̄3] + 2[Z̄1Z̄2, ψ4] = 0,

k

2π
γµDµψ̄

4 − [Z1Z̄1 + Z2Z̄2, ψ̄4] − 2[Z̄1Z̄2, ψ3] = 0 (5.9)

under Ψα = LψαL and Ψ̄α = L−1ψ̄αL
−1.

Recalling Z1Z̄1 − Z2Z̄2 = −kµΦ/2π up to shifts by a constant multiple of identity

matrix, we find that the following combinations

ψ = Z1ψ̄3 − Z̄2ψ4 and ψ = Z1ψ̄4 + Z̄2ψ3

satisfy the zero-mode equation (4.17). The other two linear combinations

ψ =
√
u1u2 (u2

1 − u2
2)ψ

3 + c
√
u1u2(u

2
2 − u2

1)ψ̄4 ,

ψ =
√
u1u2 (u2

1 − u2
2)ψ

4 − c
√
u1u2(u

2
2 − u2

1)ψ̄3

satisfy the equation (4.17) with the second term sign-flipped, so that they do not yield

zero-modes. The equations for Ψ1,Ψ2, Ψ̄1, Ψ̄2 read

k

2π
γµDµψ

1 − [Z1Z̄1 −Z2Z̄2, ψ1] = 2[Z2Z̄1, ψ2],

k

2π
γµDµψ

2 + [Z1Z̄1 −Z2Z̄2, ψ2] = 0,

k

2π
γµDµψ̄1 + [Z1Z̄1 −Z2Z̄2, ψ̄1] = 0,

k

2π
γµDµψ̄

2 − [Z1Z̄1 −Z2Z̄2, ψ̄2] = −2[Z̄1Z2, ψ̄1]. (5.10)

The second and the third equations are (4.17) with the second term sign flipped, so they

can only be solved by ψ2 = ψ̄1 = 0. Inserting (ψ1, ψ2) = (ψ, 0) or (ψ̄1, ψ̄2) = (0, ψ) to the

first or the fourth equations we get (4.17).

Summarizing, for each monopole instanton in generic vacuum, there are eight fermion

zero-modes, with two each from

Ψ1, Ψ̄2, Z1Ψ̄3 − Z̄2Ψ4, Z1Ψ̄4 + Z̄2Ψ3.

This clearly reduces to the previous result for monopole instantons when Z2 = 0. In this

generic vacuum, the zero-modes of a single monopole are in one-to-one correspondence with

the eight broken supercharges. Although the number of the broken supersymmetry is only

six for monopoles in the special vacua, the number of zero-modes cannot change just by

choice of the vacuum. The eight zero-modes per monopole therefore persist in all broken

vacua, generic or special. This explains why we found eight zero-modes in the previous

section, despite the half-BPS nature.

– 16 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
8

6. The vertex operator and non-perturbative effective action

The monopole instanton will contribute a local operator to the effective action. The purpose

of this section is to discuss the possible form of such non-perturbative terms in the effective

action. However, with the Chern-Simons term present, there is a subtlety one must first

understand.

There is a well-known argument [34] that seemingly forbid the monopole instanton

contribution to the Euclidean path integral for generic Chern-Simons theory. As a simple

example, let us recall once again the SU(2) Chern-Simons theory with an adjoint scalar

Φ. We discussed in section 4 how the Chern-Simons action transforms under complexified

gauge transformations. Let us consider here the real gauge transformation of the form

g = eiλΦ. (6.1)

The scalar field is invariant under this, while the Euclidean action for m-monopole back-

ground is shifted by a pure imaginary constant,

δSCS = ikmλ, (6.2)

where we used tr 〈Φ〉2 = 1
2 . Now for λ /∈ 2πZ, λ is neither a small gauge transformation

nor a large gauge transformation, so the path-integral over all gauge field configuration

implies integral over the gauge orbit, in other words an integral over λ from 0 to 2π. This

seemingly projects out the contributions from the sectors with nonzero monopole number.

This argument, however, overlooks another important aspect of the Chern-Simons

theory, where the Gauss constraint relates flux to electric charge. A monopole instanton

induces a jump in total magnetic flux, and must be accompanied by a related jump in total

electric charge. The final state and the initial state, mediated by the monopole instanton,

differ by an U(1) electric charge ∼ km. The constant gauge transformation by λ(∞)

measures precisely this electric charge, so the product of wavefunctions also transform by a

phase e−ikmλ(∞). The transition amplitudes for monopole-mediated processes are therefore

not projected out by integrating over the gauge orbit.

One can show the full gauge invariance of monopole-mediated amplitudes by taking

account of the gauge variance of the Lagrangian carefully. To understand how to proceed,

let us regard the system as a mechanical system with a dynamical variable q(t) and the

Lagrangian L[q]. Suppose the equation of motion is invariant under a group of symmetry

transformations G, but L is invariant only up to total time derivative.

g ∈ G : q 7−→ qg , L[q] 7−→ L[qg] = L[q] − d

dt
2πα1[q, g] . (6.3)

The functional α1 is called 1-cocycle due to the composition rule,

α1[q, g] + α1[q
g, g′] = α1[q, gg

′]. (6.4)

The Noether charge gets modified due to this last term of (6.3), so that the corresponding

quantum operator g acts on the basis states as follows,

〈q|g = e2πiα1(q,g)〈qg| . (6.5)
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Now consider the transition amplitude between the states |Ψi〉 and 〈Ψf | whose wave packets

are localized near q = qi and q = qf . The path integral gives

〈

Ψf |e−iH(tf−ti)|Ψi

〉

=

∫

[dq]Ψ∗
f [q(tf )]Ψi[q(ti)] exp

(

iS(tf ; ti)
)

. (6.6)

One can compute the kernel 〈qf |e−iH(tf−ti)|qi〉 approximately using the classical action for

a stationary path connecting q(ti) = qi and q(tf ) = qf . The kernel is not invariant under

G due to (6.3). Also, G-transformation of wave functions gives rise to a phase factor due

to (6.5): the wave functions for the states |Ψ〉 and |Ψg〉 ≡ g|Ψ〉 are related via

Ψg(q) = Ψ(qg)e2πiα1(q,g) . (6.7)

The phase rotations of the kernel and wave functions cancel, so that the transition ampli-

tudes are invariant. When applied to the previous Chern-Simons theory example and g

is chosen to be a constant gauge transformation, these phase rotations reflect the flux of

monopole instanton and the charges of the states.

The 1-cocycle α1 is trivial if it is solved in terms a 0-cocycle functional α0,

α1[q, g] = α0[q
g] − α0[q], (6.8)

since the theory is then described by a fully G-invariant Lagrangian

L̃[q] = L[q] +
d

dt
2πα0[q] , (6.9)

and the wave functions Ψ̃(q) = Ψ(q)e2πiα0[q] satisfying Ψ̃g(q) = Ψ̃(qg). However, in Chern-

Simons theories the 1-cocycle can only formally be solved, and the resulting 0-cocycle turns

out to be a nonlocal functional [42, 43]. In appendix A we record an explicit form of α0

for a simple BF-matter theory.

Let us turn to discuss in some detail the gauge transformation property of our monopole

solution in the U(2) × U(2) ABJM model. In sections 3 and 5 we solved the equations of

motion by a simple embedding of the ’t Hooft Polyakov monopole (A,Φ). The embedding

is such that the classical Chern-Simons action for the two U(2) gauge fields cancel, but

the scalars Zα and Z̄α are not conjugate of each other at infinity. A complexified gauge

transformation can correct this wrong asymptotics, but makes the total Chern-Simons

action non-vanishing. The end result was e−SE = (u1/u2)
k for one monopole where u1, u2

are the eigenvalues of 〈Z1〉. Speaking in terms of cocycles, what we have done is to use

the 1-cocycle relation (6.3) to relate the values of classical action in a “wrong gauge” to a

“real gauge”.

The Euclidean action is therefore not invariant under some gauge transformations.

Indeed, the vevs of Zα are simultaneously diagonalizable and in general break the gauge

group from U(2)×U(2) down to U(1)4. A U(1)2 subgroup rotates u1 and u2 by independent

phases, and shifts the Euclidean action by pure imaginary constant. The monopoles carry

charges under the U(1) group which phase-rotates u1 and u2 oppositely.

However, this does not imply the monopole effect is projected out, because we are not

integrating over this gauge orbit. As was reviewed in section 2, the moduli space of vacua is
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(C4/Zk)
2/S2, and in particular the two vacua labelled by (u1, u2) and (e−iλ1/ku1, e

−iλ2/ku2)

are not gauge equivalent unless λi ∈ 2πZ. This is precisely because of the monopole-

instantons breaking U(1)2 down to (Zk)
2. Our monopole-instanton action is clearly invari-

ant under this orbifold group, and it can be lifted to a well-defined function on the moduli

space.

Thus we can find the instanton contribution to the effective action, weighted by e−SE .

As emphasized before, the monopole-instanton carries the electric charges in addition to

the creation or annihilation of certain magnetic flux. We therefore consider the charge-flux

creation operator, or simply vertex operator, to describe the effective interactions induced

by those instantons. The charge creation operators are in general non-local operators

because of their long-range electric fields. In the Chern-Simons theories, however, the elec-

trically charged states do not emit the electric field, but are tied with local magnetic flux.

It implies that the charge-flux creation operators can now become local. For example, local

gauge-invariant charge-flux creation operators for scalar fields ziα are given by z̃iα (2.15),

z̃1
α = e−iθ/k+iσ/2kz1

α, z̃2
α = e−iθ/k−iσ/2kz2

α , (6.10)

where θ = 1
2(θ1 + θ2) and σ = θ2 − θ1. It is the σ normalized to have period 2π that

properly describes the effect of the monopole-instantons. Some details are explained in

appendix C.

The vertex for the instanton has to do two things. First it should create or destroy

certain quantized magnetic flux, which can be written in terms of a dual photon field σ as

eimσ . In appendix C, we show that this is indeed the case. Thus the rough form of the

gauge-invariant vertex is (m > 0)

e−SE+imσ =

(

z1

z2

)km

eimσ =

(

z̃1

z̃2

)km

(6.11)

since our notation is such that 〈zi〉 = ui. Second, the vertex must also carry km units of

an electric charge. For m > 0, the vertex we wrote already reflects this since z1
α and z2

α are

oppositely charged at unit ±1/2.

Incorporating the effect of fermionic zero-modes and the conformal invariance, we

expect further prefactors from zero-modes and massive modes. The net effect is to have

additional nonperturbative corrections to the effective Lagrangian in the broken phase,

Lnon-perturbative =
∑

m

(

gk,m(z̃, ˜̄z,∇z̃,∇˜̄z, Ψ̃, ˜̄Ψ)

(

z1
z2

)km

eimσ + c.c

)

(6.12)

where gk,m are dimension-three and charge-neutral operators. When we do not consider

motion of the vacuum moduli (∇z̃ = 0 = ∇˜̄z), the only possible term is the eight-fermion

term with

gk,m ∼ f8(Ψ̃,
˜̄Ψ, z̃, ˜̄z)

µ5(z̃, ˜̄z)
, (6.13)

where µ(z̃, ˜̄z) = µ(z, z̄) denotes the unique mass parameter (2.20) on the vacuum moduli

space and f8 is an 8-th order polynomial in the fermions with dependence on the scalar vev
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only through ratios. The charge-neutrality here implies that f8(Ψ̃,
˜̄Ψ, z̃, ˜̄z) = f8(Ψ, Ψ̄, z, z̄).

Here we indicated only the rough scaling behavior. One can further restrict the possible

structure of this term from the non-anomalous SU(4)R symmetry.

If we allow motion of the vacuum moduli, we will have various mixing terms between

fermions and ∇z, ∇z̄. Recalling the discussion in [30] about eight fermion zero-modes,

we believe that the purely bosonic terms generated by instanton effects should start with

four-derivatives

gk,m ∼ |∇z̃|4
µ3(z̃, ˜̄z)

(6.14)

again up to a dimensionless neutral operator. Determining the structure of these vertex

operators in full detail is beyond the scope of this work and needs more careful analysis.

In the next section, we will try to compare the four-derivative terms (6.14) to those in the

dual supergravity picture.

7. M/IIA bulk computation

The U(N)×U(N) ABJM model is believed to be the worldvolume theory of N M2-branes

in C
4/Zk orbifold. This proposal is so far supported by several basic evidences. One is

that the theory has the right supersymmetry and conformal symmetry. Another is that the

massless degrees of freedom of the ABJM model match precisely with those of the nonlinear

sigma models of such M2-branes. Also it has been shown that counting of superconformal

indices [19] is consistent with this proposal.

However, there is also a potentially contradicting piece of evidence that seems to say

that the number of isolated vacua of a mass-deformed ABJM model is different from what

is expected from the bulk side in the large N limit [17]. Given these mixed results, it

is natural to ask whether we can find further supporting evidences by considering more

sophisticated aspects of the theory, such as quantum-corrected interactions.

An interesting analog can be found by considering D2-branes on flat R
7, which are

nothing but M2-branes on S1 × R
7. The worldvolume theory of multiple D2-branes is

given by N = 8 U(N) Yang-Mills theory, where monopole instantons of usual kind exist

in the Coulomb phase where an adjoint scalar φ takes a vev. Polchinski and Pouliot [30]

computed, for the case of U(2), what kind of interactions are generated by these instantons

and found four-derivative terms, such as e−4πφ/e2(∇φ)4/φ3, and its supermultiplet up to

eight fermion terms, suppressed exponentially by the Euclidean action of the instanton.

On the other hand, since D2-branes are really M2-branes, a pair of D2-branes separated

by a distance r in the IIA theory exchange 11-dimensional supergravitons. In particular,

when the momenta being exchanged are those associated with the M-theory circle S1, this

generates quantum correction of type e−mr/R(∇r)4/r3 where R is the radius of the eleventh

circle and m is a positive integer. Alternatively we can think of this process as exchange of

m D0-branes. Since we can interpret the worldvolume quantities as α′φ ∼ r and e2α′ ∼ R,

this interaction term computed from M-theory is exactly the same as the four-derivative

monopole instanton vertex above computed from N = 8 Yang-Mills theory.
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Figure 1: (a) Two M2-branes placed in the C/Zk subspace of the cone C4/Zk. (b) The covering

space view of the same configuration.

Here we would like to make a similar comparison for the ABJM proposal of M2-

branes. In previous sections, we already discussed how the monopole instantons lead to

quantum correction to the effective Lagrangian at the level of four-derivative terms and the

supermultiplet thereof. Although we did not derive the exact form of the vertex, we did

derive the leading k-dependence of the vertex and also how it scales with the mass scale

µ of the generic Coulombic vacua. In the following, we will compare these four-derivative

vertices to those found in the bulk computation where M2-branes scatter off each other via

M-theory supergraviton exchange or alternatively where D2-branes interact via exchange

of D0-branes.

7.1 M-theory picture: four-derivative interactions

We think of the two M2-branes as a source and a probe. The source produces a background

field configuration,

ds2 = h−2/3dx2
1+2 + h1/3dy2 , C012 = h−1 , (7.1)

where the harmonic function for a single M2-brane is given by

h = 1 +
32π2

(M11r)6
. (7.2)

Before proceeding further, however, we wish to argue that the right thing to do to make a

comparison against the gauge theory result is to drop “1” in the harmonic function.

One way to achieve this naturally is to consider the number of “source” M2-branes

to be very large and take the near horizon limit. On the field theory side, this amounts

to considering U(N + 1) theory broken to U(N) × U(1). The latter would involve further

complication due to the fact that the monopole instanton carries U(N) charge, which we

would like to avoid.

Another is to compute everything as it is and then extrapolate to small r regime, while

maintaining the velocity of M2-branes also sufficiently small. A priori, there is no overlap

between the regime where this bulk computation is trustable (i.e., long distance regime)
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and the regime where the worldvolume gauge theory computation is reliable (i.e., short

distance regime). Nevertheless, with enough supersymmetry, the structure of interactions

mediated by BPS objects tends to be preserved across such interpolations. This has been

seen time and again in the development of D-brane physics. We will be testing the ABJM

proposal against the bulk computation, in this sense. Performing such an extrapolation

carefully is equivalent to using

h =
32π2

(M11r)6
(7.3)

from the very start.

We then study the dynamics of the probe brane using

Sprobe = T2

∫

d3x

(

−√−g +
1

6
ǫµνλ∂µX

M∂νX
N∂λX

PCMNP

)

, (7.4)

where gµν here is the pull-back of the metric (7.1). We will focus on a slow motion in

a direction transverse to the M2-brane worldvolume and perpendicular to the separation

between the two branes, following a similar computation in flat background [32, 33].

From this, we anticipate to reproduce four-derivative terms such as in eq. (6.14). Given

the 2+1-dimensional Lorentz invariance, however, it suffices to consider uniform motion of

the M2-branes, encoded in velocities v = ∂tX, instead of considering ∇X. Expanding the

probe action in powers of velocity v, we find that the (v0) term vanishes due to the BPS

cancellation between the two terms. The (v2) term serves as the kinetic term and the (v4)

term is the leading interaction term. Explicitly, the action up to the (v4) term is given by3

Sprobe =

∫

d3x

[

1

2
T2v

2 +
1

8
T2hv

4 + O(v6)

]

. (7.5)

Suppose the two M2-branes are located at ~z and ~w in C4. Without loss of generality,

we may assume |~w| > |~z|, and define

x ≡ |~z|
|~w| < 1, yeiσ/k ≡ ~z∗ · ~w

|~z||~w| (0 ≤ y ≤ 1, 0 ≤ σ ≤ 2πk) . (7.6)

For a later comparison with the field theory computation, it is convenient to use the rescaled

field theory variables

ZF.T.
a =

√

T2

2
(X2a−1 + iX2a)

Grav =
M

3/2
11

2
√

2π
(X2a−1 + iX2a)

Grav . (a = 1, · · · , 4) (7.7)

From now on we mean by z and w these rescaled coordinates of dimension 1/2. The velocity

v is rescaled by the same factor to become a variable of dimension 3/2.

The Zk orbifolding introduces mirror images of ~z at e2πiℓ/k~z (ℓ = 1, · · · k), so instead

of having a single hv4 term, we will have k copies of h with rotated centers contributing.

3The intermediate step goes like: −h
−1

√
1 − hv2 + h

−1 = 1

2
v
2 + 1

8
hv

4 + O(v6).

– 22 –



J
H
E
P
1
1
(
2
0
0
8
)
0
5
8

This effectively replaces h by (up to an overall normalization),

Fk(~z, ~w) ≡
k
∑

ℓ=1

|~w − e2πil/k~z|−6

=

k
∑

ℓ=1

1

(|~z|2 + |~w|2 − 2|~z∗ · ~w| cos(2πℓ/k + σ/k))3 , (7.8)

which reduces the periodicity of the harmonic function to 2π. The angular coordinate

σ is to be identified with the dual photon field that makes appearance in the monopole

instanton vertex, and the m-instanton amplitude is expected to be proportional to the

m-th Fourier coefficients of Fk(~z, ~w);

Fk(σ) =
∞
∑

m=−∞

fk,me
imσ . (7.9)

Each and every summand represents the monopole vertex of type (6.14). This is an ex-

pansion of the four-derivative interaction between a pair of the M2-branes, in terms of the

angular momentum m of the angle σ. In type IIA interpretation, as we will see later, m

labels the number of D0-branes being exchanged by the pair of D2-branes. D0-brane is

still the Kaluza-Klein momentum of the 11-th direction, although the latter is now an az-

imuthal angle rather than a topological circle. Collecting the results, we find the following

effective action in terms of the field theory variables

Sprobe =

∫

d3x

[

v2 +
v4

8π2

(

fk,0(~z, ~w) +

∞
∑

m=1

fk,m(~z, ~w)(eimσ + e−imσ)
)

]

, (7.10)

up to order v6.

We thus find the M-theory counterpart of (6.14) as

v4

8π2
fk,me

imσ , fk,m =

∫ 2π

0

dσ′

2π
Fk(σ

′)e−imσ
′

, (7.11)

where the overall normalization is fixed by combining (7.3) and (7.5) and taking the rescal-

ing (7.7) into account. We can combine the σ′-integral and the sum over mirror images

into an integral over the circle in the “covering space” (σ′/k → β),

fk,m(~z, ~w) = k

∫ 2π

0

dβ

2π

e−imkβ

(|~z|2 + |~w|2 − 2|~z∗ · ~w| cos β)3
. (7.12)

The integral can be most easily evaluated by a contour integral along a unit circle on the

complex plane (eiβ → z). The result is

fk,m(~z, ~w) =
8π2qk|m|

(2π/k)3(q−1 − q)3|~z∗ · ~w|3 · ak,m(q) , (7.13)

where q < 1 is defined by

q +
1

q
=

1

y

(

x+
1

x

)

, (7.14)
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and

ak,m(q) =
πm2

2
+

3π|m|(1 + q2)

2|k|(1 − q2)
+

2π(1 + 4q2 + q4)

k2(1 − q2)2
. (7.15)

The match with the field theory counterpart is easily seen by noting that the

parametrization of the generic vacuum (2.18) translates to

~z = (u1, cu2, 0, 0), ~w = (u2, cu1, 0, 0). (7.16)

With this choice, the relation (7.14) yields q = u1/u2. So one can identify the suppression

factor (exponential in k) as the Euclidean action

e−SE = qk|m| , (7.17)

which matches precisely with the field theory analysis (5.8). Furthermore, the dependence

on the fundamental scale is also reproduced correctly since

(2π/k)3(q−1 − q)3|~z∗ · ~w|3 =

(

2π

k
(1 + c2)(u2

2 − u2
1)

)3

= µ3 . (7.18)

Interestingly, the dependence on the variable c appears only through this mass scale term

in (7.13). Thus the transfer of m unit of momenta along σ direction generates the following

term in the probe M2-brane dynamics

v4

8π2
fk,m(~z, ~w)eimσ =

v4qk|m|eimσ

µ3
ak,m(q) . (7.19)

This is consistent with the monopole instanton vertex in eq. (6.14). Thus, we find that

the ABJM field theory at the nonperturbative level captures the behavior of multiple M2

brane physics faithfully.

The field theoretical computation can be further improved. For instance, the above M-

theory computation provides the exact expression for the prefactor in the form of ak,m(q)

in (7.15), which captures the complicated dependence on ratios of the vev. This, together

with 1/µ3 factor, should match the higher order corrections to the saddle point approxima-

tion in the field theory side. Also m = 0 term in the effective Lagrangian, corresponding

to the supergraviton exchange in the sector where σ momentum is zero, should come from

ordinary perturbative corrections in the field theory side. More precise check of the ABJM

proposal should be possible by computing these two classes of quantum corrections.

7.2 Consistency check with IIA picture

D0-brane probe in C
4/Zk. The bulk picture can be thought of in two equivalent

ways. In the above M-theory picture, we have N M2-branes in the orbifold C
4/Zk. In

the second, related picture, we have N D2-branes in CP
3 with nonconstant 11-th radius

and a nontrivial RR field strength dC1. In the latter, the series of interactions we found

above can be understood as exchange of different number of D0-branes between a pair of

D2-branes. Here, we will work in this latter picture and work out the k and m dependence

of the amplitude according to the D0-brane exchange picture.
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Since we have no compact S1, one might wonder what D0-branes are from the M-

theory perspective. Note that the above expansion of the M-theory effective Lagrangian to

sectors with different m is nothing but expansion of the full 11-dimensional amplitude into

some angular-momentum eigensectors. If we choose to label the associated angle as the

11-th direction, the quanta of its conjugate momentum should be called D0-branes. Even

though this 11-th direction does not define a topological circle, it is still a Killing direction

so that we have a conserved conjugate momentum. IIA picture will see these quanta as

D0-branes, Here we wish to confirm whether the individual amplitudes are consistent with

the interpretation in terms of the D0-brane worldline viewpoint.

We work in the C
4/Zk orbifold which is the vacuum moduli space of the ABJM model.

The metric is given by

ds2M = dx2
1+2 + dr2 + r2

{

dΩ2
CP3 +

1

k2
(dψ + k C)2

}

. (7.20)

We rescaled the angle of the S1 fiber such that ψ has period 2π. The 1-form C satisfies

dC = 2J where J is the standard Kähler form of CP
3. KK reduction along the ψ direction

gives the IIA background,

ds2IIA =
( r

k

)

[

dx2
1+2 + dr2 + r2dΩ2

CP3

]

,

e2φ =
( r

k

)3
, C(1) = k C . (7.21)

Now, imagine placing two M2-branes in the geometry. We use the probe approximation,

that is, we neglect the back-reaction to the geometry. Let ~z, ~w ∈ C4 be the coordinates of

the two M2-branes in the covering space.

In the IIA picture, the instanton in question is a Euclidean D0-brane connecting the

two D2-branes. The dynamics of the D0-brane should be captured by e−SDBI+iSRR , where

SDBI =

∫

e−φdℓ = k

∫

√

(dr/r)2 + ds2
CP3 ,

SRR =

∫

C(1) = k

∫

C . (7.22)

For simplicity, let us first focus on the simple case where the two D2-branes are located

on the same point in CP
3, but separated in the r-direction; take c = 0 in equation (7.16).

Then, we find

e−|m|SDBI =

(

u1

u2

)k|m|

, (7.23)

which again coincides with the field theory result.

In general, with separation in CP
3, the problem gets more complicated due to the

presence of the RR-coupling (7.22). Let us sketch how a similar analysis goes through in

this case. We first notice that one can always move the two M2-branes to lie in C
2 ⊂ C

4

by using the SU(4) rotation. Using the standard coordinates,

(z1, z2) = reiψ
(

cos(θ/2)eiφ/2, sin(θ/2)e−iφ/2
)

, (7.24)
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and dimensionally reducing along ψ we get to the IIA picture. The Euclidean D0-brane

has the worldline action S = ks, where

s =
1

2

∫
(

√

dt2 + dθ2 + sin2 θdφ2 − i cos θdφ

)

,
(

t ≡ log(r2)
)

. (7.25)

The classical variational problem becomes well defined once we Wick rotate the variable

φ = iϕ to make the action real. The problem is to find the stationary path connecting

two points (ti, θi, ϕi) and (tf , θf , ϕf ) with ϕi = ϕf = 0. Using the explicit solution to the

equation of motion, one can show the classical action satisfies

cos((θi − θf )/2) cosh s = cosh((tf − ti)/2), (7.26)

which is in precise agreement with (7.14).

Mass of fundamental string. Another important part of the four-derivative vertices

is 1/µ3 piece, which is determined by two considerations. First, 1/µ3 carries the right

dimension to render vertices to be of dimension three, making the interaction conformal.

Second, the massive particles in the Coulombic vacua is set by the unique fundamental

scale µ, so its appearance is natural. For the M2-brane interpretation of the ABJM model

to make sense, µ should correspond to the mass of an open M2-brane wrapping M-theory

circle and stretching between the two M2-branes, or that of a fundamental string stretched

between the pair of D2-branes. While this is an easy task, we show it here since we chose

a rather unconventional parameterization of the vev in the field theory.

The mass of a fundamental string stretched between two D2-branes is given by4

µbulk = T2

(

2π

k

)
∫

√

r2dr2 + r4dθ2 . (7.27)

The curve that minimizes the mass is found to be

r2(θ) =
2a

sin 2(θ + θ0)
, (7.28)

where a and θ0 are constants. Using the boundary values (7.16),

(T2/2) r
2(θ1) = u2

1 + c2u2
2, tan θ1 =

cu2

u1
,

(T2/2) r
2(θ2) = u2

2 + c2u2
1, tan θ2 =

cu1

u2
, (7.29)

we can determine a and θ0,

T2 a = 2cu1u2, θ0 = 0 . (7.30)

4Here we are using the standard polar coordinates for R
2. The coordinate θ here is different from that

in (7.24).
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Inserting them back into the mass functional (7.27), we obtain

µbulk = T2

(

2π

k

)
∫ θ1

θ2

dθ
2a

sin2 2θ

= T2

(

2π

k

)

× a

[

cos 2θ2
sin 2θ2

− cos 2θ1
sin 2θ1

]

=

(

2π

k

)

(1 + c2)(u2
2 − u2

1) , (7.31)

in perfect agreement of the mass scale µ in the broken phase of the field theory (2.20).
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A. Cocycles in a BF theory

In this section we illustrate how the gauge variance of the Lagrangian can be improved by

adding the 0-cocycle, and how to obtain it by solving the Gauss constraint. As a simple

example, we consider the abelian BF-matter theory which arises in the low-energy effective

theory of the ABJM model.

It is important that the Lagrangian for Chern-Simons theories is first order in time

derivative. The spatial components of the gauge fields are therefore divided into canonical

coordinates and momenta by a choice of polarization, whereas the time components are

Lagrange multipliers for the Gauss constraint. The cocycle then depends also on the

polarization, recalling that the first order Lagrangian L = pq̇ − H(p, q) transform under

the canonical transformation (q, p) → (p,−q) as

L′ − L = − qṗ− pq̇ = − d

dt
(pq) . (A.1)

Let us consider the BF-matter theory with the Lagrangian

L = −|Dµz|2 +
k

4π

(

b0(∂1c2 − ∂2c1) + c0(∂1b2 − ∂2b1) + b2ċ1 + c2ḃ1

)

. (A.2)

The canonical coordinates are z, b1, c1, and the commutation relation in the temporal gauge

reads

[ci(x), bj(y)]ET =
4πi

k
ǫijδ

2(x − y). (A.3)
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The physical wave function Φ(z, b1, c1) satisfies the Gauss constraints,

(

i
δ

δθ(x)
− i∂1

δ

δb1(x)
− k

4π
∂2c1(x)

)

Φ = 0,

(

− i∂1
δ

δc1(x)
− k

4π
∂2b1(x)

)

Φ = 0, (A.4)

where θ is the canonical conjugate of the gauge charge density. The solution is

Φ = exp

{

ik

4π

∫

d2x c1(x)∂−1
1 ∂2b1(x)

}

Φ̃(z(x)e−i∂
−1

1
b1(x)). (A.5)

The exponential part is identified as the cocycle,

2πα0(b1, c1) = − k

4π

∫

d2xc1(x)∂−1
1 ∂2b1(x). (A.6)

Under the local gauge transformations, the action S =
∫ tf
ti
dtL is not invariant, but can be

made invariant by adding the boundary terms from cocyles,

Sinv ≡
∫ tf

ti

dtd2x L + 2πα0(b1, c1, tf ) − 2πα0(b1, c1, ti). (A.7)

The remaining part of the wave function Φ̃(z(x)e−i∂
−1

1
b1(x)) is invariant under local gauge

transformation. For states with charge n, Φ̃ is a homogeneous function of order n. The

monopole action could have contributions from both Sinv and Φ̃, as one can see in the

appendix B.

B. Complex action and monopole action

To acquaint the complex action and its stationary path, let us consider a simple mechanics

model with a rotational symmetry. With the periodic coordinate θ ∼ θ+2π, its Lagrangian

and Hamiltonian are L = r2θ̇2/2 and H = p2/2r2, respectively, where p is the conserved

angular momentum. We are interested in calculating the amplitude

W =
〈Ψf |e−HT |Ψi〉

〈Ψf |Ψf 〉
1

2 〈Ψi|Ψi〉
1

2

(B.1)

between initial and final states of angular momentum pf , pi. We choose the wave functions

to be functions of coordinate so that Ψi ∼ eipiθ. The norm of the initial and final wave

functions are not relevant. One can express the above amplitude as a path integral

∫

[dθ]Ψ(θf )
∗e−SEΨ(θi) =

∫

[dpdθ]e−SE−Sb , (B.2)

where the Euclidean action and the boundary contribution are given by

SE =

∫

dτ

(

−ipθ̇ +
p2

2r2

)

, Sb = i(pfθf − piθi) . (B.3)
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It is easy to find the stationary path of the above path integral. From the p, θ variations,

we get p = ir2θ̇, ṗ = 0 and p(tf,i) = pf,i. Note that the boundary variations of θf,i fix

the initial and the final momenta. The solution is that pf = pi and θ = −ipiτ/r2 up to a

constant shift of τ . The total action becomes

SE + Sb = +
p2
iT

2r2
. (B.4)

This is exactly what we expect from an energy eigenstate of E = p2
i /2r

2. As SE = −p2
i /2r

2,

the wave function contribution is crucial. Note that the stationary path of angle has an

imaginary direction. One point is that the phase is purely imaginary at the stationary point

and so that eiθ and e−iθ are not complex conjugate to each other along the stationary path.

We are applying the similar idea for our monopole instantons. The partition function

Z can be written as

W =

∫

[dφ]Ψf (z
i)∗e−SEΨi(z

i) . (B.5)

The monopole instanton is interpolating two states whose charge difference is km and so

the vacuum wave function on S2
∞ is

Ψf (z
i)∗Ψi(z

i) ∼
(z1
z2

)n1
( z̄1
z̄2

)n2

. (B.6)

We consider here only spatially homogeneous mode of the fields. This carries zero charge

under zi → eiǫzi and carries km charge under z1 → eiλz1, z2 → e−iλz2 if

n1 − n2 = km . (B.7)

In terms of the phase θi of the zi fields, the wave function becomes

〈Ψf |Ψi〉 ∼ ekm(iθ1−iθ2) . (B.8)

The modulus of the wave function cancels and does not appear in the partition function. In

the wave function, there would be also cocycles and additional part linear in b1 as presented

in the previous section.

Now we consider the stationary configuration of the Euclidean path integral. We use

the monopole solution Z, Z̄ ,A = Ã as the field configuration and calculate the action. This

illuminates the finer points of the wave function and cocycles. In this case, the Euclidean

Chern-Simons action also vanishes. The wave function at infinity is almost abelian and the

cocycle will be approximated by the previous appendix,

SE + 2πiα0(φ) + ikm(−∂−1
1 b1 + θ) . (B.9)

The cocycle contribution vanishes since it is linear in b = A − Ã and b vanishes for the

present field configuration. The only possible contribution should arise from the wave

function.

For the solution Z = (z1, z2) and Z̄ = (z̄1, z̄2), the asymptotic value of the solution

from equation (3.13) becomes

〈z1〉 = u1e
iθ1 =

√
u1u2, 〈z2〉 = u2e

iθ2 =
√
u1u2 ,

〈z̄1〉 = u1e
−iθ1 =

√

u1

u2
, 〈z̄2〉 = u2e

−iθ2 =

√

u2

u1
. (B.10)
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Thus the asymptotic value of the phase becomes imaginary

e−iθ1 = eiθ2 = eΛ∗ =

√

u1

u2
. (B.11)

For the BPS solutions Z, Z̄ ,A = Ā of m monopoles, the matter action, the Chern-Simons

term and the cocycles all vanish except the phase term from the wave function which is

imaginary, or

e−SE = eikm(θ1−θ2) =
(u1

u2

)km
. (B.12)

C. Monopole vertex operator in the ABJM model

As discussed in section 4 and also in [35], the vertex operators are widely used to describe

the low-energy effective interactions induced by monopole-instanton solutions. For the

ABJM model, the monopole instanton vertex operators carry both magnetic flux and

electric charge and would be different from those in three-dimensional Maxwell theory. We

discuss in this section the monopole vertex operators in more details with emphasis on

their physical origin.

Let us start with the flux creation operator Ω(x) in three-dimensional Maxwell theory

whose UV description is the Georgi-Glashow model. It is well-known that an operator

Ω(x) creating flux B at a point x takes the form as

Ω(x) = exp

(

i
B
4π
σ(x)

)

, (C.1)

where σ denotes the dual photon

Fµν =
1

4π
ǫµνρ∂

ρσ , [σ(x), ∂0σ(y)]ET = 16π2iδ(x − y) . (C.2)

Here σ is normalized to have period 2π. One can show that Ω(x) creates a flux B at x

using the relation ∂0σ = 4πF12 together with canonical equal-time commutation relation,

[F12(x),Ω(y)] =
1

4π
[∂0σ(x),Ω(y)] = Bδ(x − y)Ω(y) . (C.3)

For the monopole-instanton that creates the flux 4πm, the vertex operator becomes

Ωmonopole(x) = exp (imσ(x)) . (C.4)

We now in turn consider the flux creation operator in the ABJM model whose low-

energy dynamics can be effectively described as the BF-theory (2.12). It is not guaranteed

that the flux creation operator in the BF-theory takes the same form as the previous one.

We will show this is still the case. Let us restrict our attentions on a simple and illustrative

BF-model

L = −|Dµz|2 +
k

4π
ǫµνρbµ∂νcρ (C.5)
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with Dµz = ∂µz − ibµz. The canonical commutation relation reads

[bi(x), cj(y)]ET = +i
4π

k
ǫijδ(x − y) , (C.6)

once we choose the temporal gauge b0 = c0 = 0. The Gauss laws become

k

4π
F

(+)
12 − ρB = 0 , F

(−)
12 = 0 , (C.7)

where ρB denote the gauge charge density and F (+) = dc, F (−) = db. They simply

imply that we can identify the flux F (+) as the asymptotic unbroken U(1) field of the

instanton which carries the electric charges. For the vertex operator of instanton, we

therefore construct a certain operator Ω(x) that creates flux F (+) and charges.

In order to find out Ω(x) of our interest, we first introduce the Lagrangian multiplier

L = −|Dµz|2 +
1

8π
ǫµνρ (kbµ + ∂µσ)F (+)

νρ . (C.8)

The modified Lagrangian is invariant under the U(1) gauge symmetry

bµ → bµ + ∂µλ , σ → σ − kλ , z → eiλz . (C.9)

Since, from (C.8), we can identify 1
4πF

(+)
12 as the conjugate momentum of dual photon σ,

the flux creation operator can be described as

Ω0(x) = exp

(

i
B
4π
σ(x)

)

. (C.10)

It however transforms under the gauge symmetry:

Ω0(x) → exp

(

− i
kB
4π
λ(x)

)

Ω0(x) . (C.11)

We therefore conclude that, for gauge-invariance, the flux creation operator also needs the

creation of kB/4π units of charges so as to satisfy the Gauss law (C.7). The gauge-invariant

charge-flux creation operator Ω(x) thus takes the following form

Ω(x) = Ω0(x) · Q(x) , (C.12)

where Q(x) carries the charges Bk/4π so that its local gauge transformation is opposite

to that of Ω0(x). For the monopole-instanton that creates the flux 4πm, the vertex oper-

ator becomes

Ωmonopole(x) = exp
(

imσ(x)
)

Q(x) , (C.13)

where the operator Q(x) creates charge of mk.

These ideas can be applied to the ABJM model to explain the charge-flux creation

operators (6.10) and the monopole vertex operators (6.11).
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